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Abstract—This paper presents a novel way to bias the sampling
domain of stochastic planners by learning from example plans.
We learn a generative model of a planner as a function of
proximity to labeled objects in the workspace. Our motivation
is that certain objects in the workspace have a local influence
on planning strategies, which is dependent not only on where
they are but also on what they are. We introduce the concept
of a Semantic Field — a region of space in which configuration
sampling is modelled as a multinomial distribution described
by an underlying Dirichlet distribution. We show how the field
can be trained using example expert plans, pruned according to
information content and inserted into a regular RRT to produce
efficient plans. We go on to show that our formulation can be
extended to bias the planner into producing sequences of samples
which mimic the training data.

I. INTRODUCTION

Stochastic motion planning is an established technique in
robotics that enables motion planning in complex workspaces,
or for systems that have high-dimensional configuration
spaces. Rapidly-exploring Random Trees (RRT’s [1]) and
Probabilistic Road Maps (PRM’s [2]) are both instantia-
tions of stochastic planners. Both RRT’s and PRM’s utilise
a graphical representation of the workspace, which captures
the relationship between free and occluded space. RRT’s are
categorised as “one-shot” planners - the planning system has
to be re-initalised for each new plan or “query”. Conversely
PRM’s, once instantiated, are persistent throughout the task
and can be re-queried.

RRTs have been effective for a number of different motion
planning tasks, including manipulation and grasping [3], kino-
dynamic planning[4] and for other non-holonomic systems [5].
With the introduction of probabilistic planners, a substantial
body of research has been directed at manipulating the sam-
pling domain to overcome this issue. Uniform sampling of the
configuration space suffers from the so-called “narrow passage
problem” - more samples are generated in the free space than
in the more complex regions, which is typically where more
information is required.

Some of the earliest strategies for biasing the sampling
distribution in the workspace include the Narrow Passage
Sampling strategy [6] and the Gaussian Strategy for PRM’s
[7], amongst others. Both methods utilise a pre-determined
criteria to determine whether samples generated in the configu-

ration or workspace are considered for planning. C-Space sam-
pling strategies include Approximated Medial Axis sampling
[8](which has a workspace counterpart), in addition to strate-
gies which explore the C-space boundaries[9]. Workspace-
based methods include Dynamic Domain RRTs which adap-
tively bias the sampling domain[10], cell-based decomposition
methods which determine which regions require more attentive
sampling [11] [12] and model-based methods which actively
seek to sample in unknown or poorly sampled regions [13].
Recent techniques have utilized features in the environment to
better determine how to bias the sampling distribution - Adap-
tive Workspace Biasing [14] generates an optimized weighting
of feature vectors defined over a voxelised workspace. Various
hybrid methods incorporating multiple different sampling have
also been proposed [15].

The majority of planners use either a pre-defined sampling
criterion to evaluate the samples generated, or adapt the
sampler to features present in the workspace. For terrestrial
robotics, there exists a large amount of logged data on how
a user operates a vehicle under remote control. It is possible
then to consider the operator as an expert, and try to emulate
the behaviour of the vehicle in certain environments, whilst
still maintaining the exploratory nature of the probabilistic
approach. This paper is primarily concerned with generating
a sampling process for RRT’s, although the framework should
extend naturally to PRM’s.

A. Semantic Fields

In any path-planning task, there will be certain regions in the
configuration or workspace that are more beneficial to sample
from regularly. Typically the goal of the planner is considered
to be one of these regions - biasing the sample generator
of the planner a certain amount towards the target results in
improved performance. We begin with the assumption that a
human operator uses semantic knowledge to influence their
planning strategies near identifiable objects. A few everyday
examples are illustrative: people tend to approach doors head-
on, avoid the tops of stairwells, and keep clear of moving
objects. This sufficiently motivates us to introduce the notion
of “semantic fields” - regions of the workspace in which
sampling is influenced both by the geometry of an object and
what the object is. The task is therefore to learn what form



this influence takes from such examples and to incorporate
that effect into a probabilistic planner.

Fig. 1. Illustraton of a 100 × 50 cell grid-world. Darker areas correspond
to blocked regions. An expert trajectory through the environment is shown in
green. The goal is to generate a collision-free path from the lower-left to the
upper-right.

Continuing with the simple example of motion through a
doorway, consider Figure 1 which shows the test grid-world
with an “expert path” generated by a human operator. The
goal is to manoeuvre a holonomic point robot from the start
position, located at the lower left to the goal position at the top
right. Here the environment has been discretised into a 100x50
grid of cells, with darker areas indicating blocked regions.
Situated at the centre of each opening in the environment is a
semantic field, with an influence over a neighbouring group of
cells. The expert is then modeled as a stochastic planner who
chooses samples within this region. The semantic field can
be considered to be a random variable with k states, where
k is the number of cells in the field. A set of N exemplar
paths are then observed that pass through the field. Each
path is discretized and each element is considered to be an
independent observation, corresponding to a specific cell in
the grid, and therefore a state of the random variable. The
distribution that describes the counts of these observations over
the grid is the Multinomial distribution:

Mult(s1, s2 . . . | µ, N) =
N !

s1! · · · sk!
µs1

1 · · ·µsk
k

=
N

s1 . . . sk

k∏

k=1

µsk
k (1)

This Multinomial describes the counts over the semantic
field cells S = {s1 . . . sk} for N discrete observations with cell
probabilities µ = {µ1 . . . µk} [16]. The goal of the planner
during the learning phase is to approximate the multinomial
distribution that best describes the collection of exemplar paths
shown during the training phase We denote these data as
Z = {z1 . . . zk}, where zk corresponds to the number of
observations of state k. From a Bayesian standpoint, Equation

1 can be considered to be a likelihood term. The conjugate
prior of the Multinomial distribution is the Dirichlet, defined
as:

Dir(µ1, . . . , µK ;α1, . . . ,αK) =
1

B(α)

K∏

k=1

µαk−1
k (2)

Where α = {α1 . . . αK} are the “shape” parameters, which
can be interpreted as “frequency counts” of observed variables,
and B(α) is a normalisation term. A natural question that
arises is the initial choice of alpha, or the “prior” over
the Dirichlet parameters. Using equal initial α values of 1
equates to a uniform distribution over parameters. To obtain
the posterior distribution:

p(µ | Z,α) (3)

where Z is the set of cell counts, the prior distribution (2) is
multiplied by our likelihood (1) so that:

p(µ | Z,α) ∝ p(Z | µ, N)p(µ | α)

∝
K∏

k=1

µαk+Zk−1
k (4)

where Zk corresponds to the number of observations of state
k in the training data. The Bayesian update corresponds to:

p(µ | Z,α) = Dir(µ | α + Z) (5)

As such, the multinomial distribution describing the under-
lying semantic field can be updated in a Bayesian fashion by
observing and incrementing the visitations of the expert path
to each underlying cell. In order to generate samples from
this model, it is necessary to parameterize the Multinomial by
a set of µ values drawn from this posterior. Sampling from
the Dirichlet posterior (as parameterised by the α values),
involves collating K independant random samples are drawn
from unit-scale Gamma distributions:

xk ∼ Γ(αk, 1) (6)

The resultant sample x = (x1 . . . xi) is defined as:

xi =
xk∑K

k=1 xk

(7)

which is one sample from the posterior distribution. Utilis-
ing the Dirichlet/Multinomial distributions in this manner is a
technique well known in text classification[17].

Figure 2 shows two exemplar paths through different “door-
way” configurations. Figure 3 shows the evolution of samples
from the posterior distribution during the learning process for
each of the openings shown in Figure 2. Each sample from the
posterior p(µ | Z,α) is a distribution that parameterises the
Multinomial over the semantic field, and can be considered as
one member of a family of such distributions.



Fig. 2. Training routes through different obstacle types: a) Uniform opening
(left), and (b) a more complex obstacle type (right). Training data was obtained
by manually generating sets of such paths.

Fig. 3. These are samples drawn from a Dirichlet distribution p(µ | Z, α) as
N increases (i.e. more training examples are observed). Blue areas correspond
to low probability, red areas to high probability. (Best viewed in color.)

Samples in the workspace are generated by parameteris-
ing a Multinomial distribution with the probabilities from
the Dirichlet sample, and then sampling uniformly from the
probability mass function of the Multinomial. Figure 4 depicts
a set of 1000 samples generated from the multinomial distri-
bution described by the sampled posterior. This technique is
somewhat similar to the technique used in [18], where the
authors use a non-homogeneous Poisson process to perform
tracking of people in a lab. The resulting spatial affordance
map bears some resemblance to the semantic field, although in
the planner case we do not require the underlying distribution
to be time-varying.

B. Sequence Generation
Sampling from a static distribution over the semantic fields

will lead to better planner performance through complex
regions, although it does not replicate the natural paths that
were observed during the learning phase. In order to construct
a sampling strategy that would generate paths similar to those
of an expert, a spatial consistency over paths must be enforced.
To model the state-to-state transitions of the learned paths, the
cells in the semantic fields were viewed as a 4-connected grid.
From the learned data, the transition probability describing the

Fig. 4. 1000 samples from a Multinomial distribution (top) as parameterised
by a sample from the posterior distribution(below). Regions of high probability
in the Dirichlet sample (white) correspond to increased cell counts.

transition from state s to state s′ is:

P (xs′ | xs) =
T (xs, xs′)
T (xs, x∗)

iff xs′ ∈ N (xs) (8)

Where T (x, y) defines the number of times that a state
transition was observed from state x to y, x∗ denotes every
neighboring state and N (.) defined the set of neighbours of
a state. In this way, we learn to bias the sampling towards
sequential paths - however, this can be problematic; if the
training data are insufficient, the resultant transition matrix
would have zero entries corresponding to state transitions that
were never observed. To obtain a less extreme prediction of
state transition probabilities, we assume a Dirichlet prior over
each transition probability:

Dir(µ1, . . . , µK ;α1, . . . ,αK) =
1

B(α)

K∏

k=1

µαk−1
k (9)

Where α in this definition corresponds to the observation of
state transitions. Figure 5 depicts the state-neighbour transition
probabilities for each of the 121 states in the grid to each of
its 4 neighbours:

Fig. 5. Probability matrix for all 121 states in the semantic field. As the
field is 4-connected, there are 4 possible transitions for each state, actions are
(from left to right): Up, down, left and right. Dark blue areas correspond to
low probability, red areas correspond to high probability.

A high probability for a state-neighbour pair suggests that
the posterior distribution is expressing a preference for tran-
siting to a specific neighbour from a specific state. It can
be see from Figure 5 that the lower indexed states express
high preference for their neighbours, while those in later
states do not. This is a result of the training data collected
over the field illustrated in Figure 2(a). There tends to be



more heterogeneity in the initial states, due to the fact that
there are numerous directions from which one can approach
a doorway, transitioning from the left to the right. As the
tracks progress through the field, they all tend to behave in
a similar way. This can be seen in Figure 3(lower left) where
there tends to be a low probability for states that do not occur
on the main thoroughfare, and therefore the state transition
matrix in this region tends to be more homogeneous as no
(or very few) state-transitions were observed. To pose this in
a sampling framework, if a node of the RRT is under the
influence of a semantic field and is selected by the planning
algorithm to undergo the extend step, then another sample is
generated within the field and this is done in proportion to the
probabilities of the neighbours. (See Algorithm 1)

C. Field pruning
During the learning phase, the semantic fields were bounded

in a predetermined way (for the example grid-world, this was
an 11×11 grid). This may not be optimal during planning, as
the planner may sample in a region of the semantic field which
is uninformative, meaning the field may express a uniform
action for each possible state, in which case there is little to be
gained from utilising the bias of the field. Therefore there is a
need to prune the semantic field, in order to definitively specify
the region in which there is expected to be a measurable
gain from utilising the learned bias. One way of doing this
is to analyse the information content of the field, specifically
by evaluating the Mutual Information (MI) between adjacent
states in the grid:

MI(X;Y ) =
∑

y∈Y

∑

x∈X

p(x, y)log
p(x, y)

p(x)p(y)
(10)

Using the MI as a guiding criterion, it is possible to parse the
grid structure and remove states whose information relative to
its neighbors is below a certain threshold. Shown in Figure 6
is the resultant map obtained from evaluating the pairwise MI
for states on a semantic field similar to that of the right-most
illustration in Figure 2. For this particular region, the field was
shown more paths transiting through the upper route than the
lower - hence the posterior’s preference for the top route.

Fig. 6. Posterior distribution as observed through a doorway with two exits.
On the left is the generated distribution, on the right is the distribution after
it has been pruned by using the Mutual Information content between cells as
a criterion.

Figure 6 also shows the semantic field before trimming
(darker blue areas corresponding to low probability, colours
tending to the red spectrum denote high probability). Note that
low-probability areas around the peripheral of the field have

been discarded, corresponding to the low information content
of these states relative to their neighbours.

D. Integration of Semantic Fields and RRTs
Because the semantic fields are defined over specific regions

in the state space, a uniform distribution over the workspace
was incorporated to maintain the “exploratory” nature of the
planner. As such, there is a weighting between the uniform
distribution, and the pdf resulting from the semantic fields.
This parameter, termed β, was required to be estimated (see
Results section) and constitutes the only free parameter of the
model. Once the optimal weighting has been determined, the
overall planning algorithm for the static environment can be
summarized as follows:

Algorithm 1 RRT with Semantic Field bias
1: procedure SEMANTICFIELDRRT(β)
2: T .initialiseRRT ()
3: while counter < maxSamples do
4: s← GenerateRandomSample(β)
5: n← T .RetrieveClosestNode()
6: if NodeIsInSemanticF ield(n) then
7: s← GenerateF ieldSample # (s replaced)
8: end if
9: p← T .Extend(s) # (new state)

10: if NoCollision(p) then # (collision checker)
11: T .addNewNode(p)
12: end if
13: if GoalReached(p) then
14: status← success
15: return(status, T )
16: end if
17: end while
18: status← failure
19: return(status)
20: end procedure

This represents a modified version of the traditional RRT
algorithm, incorporating a two-stage sampling strategy: A
sample is generated in the workspace according to the weight-
ing β, and the nearest neighbour (measured in terms of the
Euclidean distance) is selected - if that node is under the
influence of a semantic field, the sample is over-ridden with
a sample generated from the field. This strategy ensures the
frontier nodes are still selected in proportion to the Voronoi
region they occupy, while simultaneously generating local
samples in the semantic field that are more informative for
the planner.

II. RESULTS

Shown in Figure 7 is the result of a static planning query
with a standard RRT in the grid-world, alongside a semantic-
field based query.

The starting state for this system is at the lower left, with
the target located at the upper right. Each planner query was
allowed a fixed number of planning cycles before it was



Fig. 7. Behaviour of an RRT in a test grid-world under uniform sampling
(left) and with semantic field-based sampling (right)

terminated. Invoking the planner with a uniform sampling set,
the RRT behaves as expected - it is able to transition through
most of the grid world, although ultimately fails to reach
the goal in the allotted time. This is contrasted against the
semantic field planner (Figure 7, right) which is able to solve
the planning task in the allocated time. In both cases, the RRT
had a built-in bias towards the goal - this technique is common
practice in order to ensure some measure of convergence
towards the target. This sample result shows that the biased
planner is able to transition through the environment and reach
the goal in less planning cycles than the uniform planner. This
is expected as the training data provided prior information that
“doorways” were more appealing features in the environment
to sample near.

Fig. 8. Results of varying the ratio between uniform and “semantic field”
strategies for the grid-world shown. The ratio parameter is defined as β where
the probabilities of sampling from each scheme are: p(uniform) = β and
p(semanticfield) = (1−β). The result of varying β is plotted against the
number of successful planning queries, out of 20 instantiations.

Figure 8 shows the effect of varying the ratio between
the uniform pdf and the semantic field pdf. The plotted data
depicts 2400 planning queries over the adjacent grid-world.
Purely uniform sampling with a standard RRT was typically
unable to solve any planning queries for this scenario, and
as such was left out. The relationship between the two com-
ponents of the sampling scheme (uniform and semantic-field
based) shows that extreme weightings of either strategy leads
to a low proportion of successful queries, and that a preferable
weighting occurs in the β = 0.2 → 0.4 range. To show that
paths generated by a planner under the influence of a semantic
field are more like the training data than the conventional RRT,
a similarity measure was calculated. The nodes generated by
the planner within the field are considered to be observations.
For a given path-set of observations N = {n1 . . . nT }, and
their corresponding probabilities ν = {ν1 . . . νT } under the

posterior as defined by Equation 5, the similarity measure S
is given by:

SN =
T∑

t=1

log(νt) (11)

Figure 9 (a) shows the posterior distribution under a set of
fabricated paths. The intent of this set is to generate planner
behaviour that traverses through a semantic field in a very
specific way - in this case following a bend. This particular
field was defined over the goal region, and as such all the
paths terminate at the centre of the field, which corresponded
to the goal state.

Fig. 9. Data showing the similarity measure between the training data
and paths generated using both the semantic-field based approach, and a
conventional RRT. (a) Shown is the posterior distribution over the training
data (left), as well as (b) the similarity measures of 100 paths generated by
both random and semantic-field based RRTs as compared to the training data
(right).

Figure 9(b) illustrates the similarity of the training data
to paths generated by a standard RRT (highlighted in green)
to the training data, as compared to those generated by the
semantic-field based planner (highlighted in red). As can be
seen in the figure the average similarity of the semantic field
RRT (plotted in dashed-red) is higher than that of the random
RRT (dashed-green).

III. CONCLUSION

The introduction of semantic fields provides a way to
learn from expert demonstration as to how features in the
environment affect planning strategies. By defining a semantic
field over a region in space and observing the behavior of
a system under human control, it is possible to update a
sampling distribution over the field in a Bayesian fashion.
Utilizing this biased sampling strategy during planning shows
that the planner is capable of solving queries that a conven-
tional RRT is unable to. This technique can be generalized
to more complicated environments, or incorporated into other
planner types (for example C-space planners). This method
will generalize to handling dynamic obstacles in the planner
environment if there are sufficient data to form a suitably
confident distribution from which to sample. Further work in-
cludes incorporating non-parametric methods into the sampler
(for example, Gaussian Processes) to better approximate the
distribution over continuous workspaces.



IV. ACKNOWLEDGEMENTS

This work was funded by the Office of Naval Research
(ONR) Grant N00140810337.

REFERENCES

[1] S. LaValle, “Rapidly-exploring random trees: A new tool
for path planning,” TR 98-11, Computer Science Dept.,
Iowa State University, Tech. Rep., 1998.

[2] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H.
Overmars, “Probabilistic roadmaps for path planning in
high-dimensional configuration spaces,” in IEEE Interna-
tional Conference on Methods and Models in Automation
and Robotics, 2005. MorganKaufmann, 1997, pp. 566–
580.

[3] M. Kallmann, A. Aubel, T. Abaci, and D. Thalmann,
“Planning collision-free reaching motions for interac-
tive object manipulation and grasping,” Eurographics,
vol. 22, pp. 313–322, 2003.

[4] J. Cortes and T. Simeon, “Sampling-based motion plan-
ning under kinematic loop-closure constraints,” in In 6th
International Workshop on Algorithmic Foundations of
Robotics. Springer-Verlag, 2004, pp. 59–74.

[5] J. Kim and J. Ostrowski, “Motion planning a aerial robot
using rapidly-exploring random trees with dynamic con-
straints,” in Robotics and Automation, 2003. Proceedings.
ICRA ’03. IEEE International Conference on, vol. 2,
Sept. 2003, pp. 2200–2205 vol.2.

[6] Z. Sun, D. Hsu, T. Jiang, H. Kurniawati, and J. Reif,
“Narrow passage sampling for probabilistic roadmap
planning,” IEEE Transactions on Robotics, vol. 21, no. 6,
pp. 1105–1115, 2005.

[7] V. Boor, M. H. Overmars, and A. F. van der Stappen,
“The gaussian sampling strategy for probabilistic
roadmap planners,” in Robotics and Automation, 1999.
Proceedings. 1999 IEEE International Conference on,
vol. 2, 1999, pp. 1018–1023 vol.2. [Online]. Available:
http://dx.doi.org/10.1109/ROBOT.1999.772447

[8] Y. Yang and O. Brock, “Adapting the sampling distribu-
tion in PRM planners based on an approximated medial
axis,” in IEEE International Conference on Robotics and
Automation, vol. 5. Citeseer, 2004, pp. 4405–4410.

[9] N. Amato, O. Bayazit, L. Dale, C. Jones, and D. Vallejo,
“OBPRM: An obstacle-based PRM for 3D workspaces,”
in Robotics: The Algorithmic Perspective: 1998 Work-
shop on the Algorithmic Foundations of Robotics, 1998,
pp. 155–168.

[10] A. Yershova, L. Jaillet, T. Simon, and S. M. LaValle,
“Dynamic-domain rrts: Efficient exploration by control-
ling the sampling domain,” in Proceedings IEEE Inter-
national Conference On Robotics and Automation, 2005,
pp. 3867–3872.

[11] J. van den Berg and M. Overmars, “Using workspace
information as a guide to non-uniform sampling in prob-
abilistic roadmap planners,” The International Journal of
Robotics Research, vol. 24, no. 12, p. 1055, 2005.

[12] T. Simeon, J. Laumond, and C. Nissoux, “Visibility-
based probabilistic roadmaps for motion planning,” Ad-
vanced Robotics, vol. 14, no. 6, pp. 477–493, 2000.

[13] B. Burns and O. Brock, “Sampling-based motion plan-
ning using predictive models,” in Proceedings of the
2005 IEEE International Conference on Robotics and
Automation, 2005. ICRA 2005, 2005, pp. 3120–3125.

[14] M. Zucker, J. Kuffner, and J. Bagnell, “Adaptive
workspace biasing for sampling-based planners,” in IEEE
International Conference on Robotics and Automation.
New York: IEEE Press. Citeseer, 2008, pp. 3757–3762.

[15] S. L. Thomas, M. Morales, X. Tang, and N. M. Amato,
“Biasing samplers to improve motion planning perfor-
mance,” in ICRA, 2007, pp. 1625–1630.

[16] C. M. Bishop, Pattern Recognition and Machine Learn-
ing (Information Science and Statistics). Springer,
August 2006.

[17] R. E. Madsen, D. Kauchak, and C. Elkan, “Modeling
word burstiness using the dirichlet distribution,” in In
Proceedings of the 22nd International Conference on
Machine Learning, 2005, pp. 545–552.

[18] M. Luber, G. Tipaldi, and K. Arras, “Spatially grounded
multi-hypothesis tracking of people,” in Workshop on
People Detection and Tracking, 2009 IEEE International
Conference on Robotics and Automation (ICRA), Kobe,
Japan, 2009.


