
• The distribution that describes the counts of  these observations is the Multinomial:

•This describes the counts over the semantic field cells S={s1,..,sk} for N discrete 

observations with cell probabilities "={"1,..,"k}

•The goal of the planner during the learning phase is to approximate the multinomial 

distribution that best describes the collection of exemplar paths shown during the 

training phase (denoted as Z={z1,...,zk}

•This can be considered to be a likelihood term, and utilizing the conjugate prior of 

the Multinomial distribution, the Dirichlet: 

(where !={!1,...,!K} are the “shape” parameters, which can be interpreted as 

“frequency counts” of  observed variables), we can form the posterior distribution:

•The figure below shows a draw from the posterior distribution, with 1000 samples 

drawn from a Multinomial distribution parameterized by the posterior: 

•The figure below shows two exemplar paths through different “doorway” 

configurations (also shown is the evolution of samples from the posterior distribution 

during the learning process):

Utilizing Mutual Information

•During the learning phase, the semantic fields were bounded in a predetermined way 

(for the example grid-world, this was an 11x11 grid), which may not be optimal 

during planning

•Therefore there is a need to prune the semantic field, in order to definitively specify 

the region in which there is expected to be a measurable gain from utilizing the 

learned bias

•One way of doing this is to analyze the information content of the field, specifically by 

evaluating the Mutual Information (MI) between adjacent states in the grid:

•The trimmed field (right) shows that states with a low MI content relative to their 

neighbors have been removed 

•To ensure that the planner is probabilistically complete, a free weighting 

parameter is introduced between the distributions generated by the semantic fields, 

and a uniform distribution

•The above image shows 1000 samples generated uniformly (left), and with the 

semantic-field distributions (right)

Learning to Plan

1. Introduction

•Many techniques exist for solving motion-planning problems: 

Decomposition-based methods, potential-field methods, and 

sampling-based approaches

•We presents a novel way to bias the sampling domain of sampling-

based planners by learning from example plans

•We introduce the concept of  a Semantic Field  

•We show how the field can be trained using expert data, pruned 

according to information content and inserted into a regular RRT to 

produce efficient plans

2. Sampling-based Planning

Rapidly-Exploring Random Trees [RRT]

•RRTs[1] are a form of 

sampling-based planner, 

used for solving complex 

path-planning queries[2][3]

[4]

•The planner generates an approximation of the free-space (C-free) of 

the environment through sampling

•The performance of the planner is highly dependent on the sampling 

strategy used[5][6]

Sampling Strategies

•Sampling strategies can be deterministic (Halton or Hammersley 

points sets), or random

•Deterministic sampling methods generate low-discrepancy points[7]

•However, in some cased the 

discrepancy is a poor measure of 

point equi -d i s t r ibut ion, and 

the re fo re r andom samp l ing 

strategies (which generalize better to 

higher dimensions) are used

•The sampling strategy employed 

directly impacts the performance

•We seek to learn better sampling distributions based on the 

trajectories we have observed from vehicles under expert control
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5. Future Work

•Analysis and verification on existing datasets, 

collected over several years

•This technique can be generalized to more 

complicated environments, or incorporated into other planner types 

(for example Probabilistic Road Maps[8])

•Further work includes  incorporating non-parametric methods into 

the sampler (for example, Gaussian Processes) to better approximate 

the distribution over continuous workspaces

•As the SF’s represent expert domain knowledge, the concept could be 

incorporated in graph-based planning algorithms (e.g D*[9]) 

4. Incorporating transients

•To be effective in a realistic environment, transient obstacles must be 

incorporated

•The figure below shows a prior sampling distribution placed over 

constant-velocity, constant-heading randomly placed obstacles in the 

environment (red corresponds to higher probability):

•The planner therefore tends to select samples around the periphery 

of  an obstacle

• The above figure shows the performance of  the planner for a 

sequence of  queries with increasingly more dynamic objects 

• The system is capable of  solving planner queries even with a 

relatively large number of  transients 

p(µ | Z, α) = Dir(µ | α + Z)

MI(X;Y ) =
�

y∈Y

�

x∈X

p(x, y)log
p(x, y)

p(x)p(y)

Planner Performance

•To evaluate the performance of  the algorithm, it was necessary to 

evaluate the weighting parameter (termed !)

•The above figure(left) shows the results of  varying ! and running 

multiple queries (for the adjacent grid world)

•Extreme weighting values led to poor planning results

•Optimal values lie in the [0.2;0.4] range 
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3. Semantic Fields

•We assume that a human 

operator uses semant ic 

knowledge to influence their 

planning strategies near 

identifiable objects

•A simple example grid-world 

is shown in the adjacent 

figure, with a corresponding 

“expert path”

• The goal is to maneuver a holonomic point robot from the start 

position (lower left) to the goal position at the (top right) 

•Situated at the centre of each opening in the environment is a 

semantic field (green), with an influence over a neighboring group 

of cells, and the expert is modeled as a stochastic planner who 

chooses  samples within this region 

•The semantic field can be considered to be a random variable with k 

states, where k is the number of  cells in the discrete field 

Constructing the fields 

•We observe a set of  N exemplar paths through the field

•Each path is discretized and each element is considered to be an 

independent observation, and therefore a state of the random 

variable
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