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Abstract—In this paper we describe and demonstrate a
method for precisely localizing a road vehicle using a single
push-broom 2D laser scanner while leveraging a prior 3D
survey. In contrast to conventional scan matching, our laser
is oriented downwards, thus causing continual ground strike.
Our method exploits this to produce a small 3D swathe of
laser data which can be matched statistically within the 3D
survey. This swathe generation is predicated upon time varying
estimates of vehicle velocity. While in theory this data could be
obtained from vehicle speedometers, in reality these instruments
are biased and so we also provide a way to estimate this bias
from survey data. We show that our low cost system consistently
outperforms a high caliber integrated DGPS/IMU system over
26 km of driven path around a test site.

I. INTRODUCTION

This paper is about the precision localization of a road ve-
hicle using laser. Our focus is the cheap run time exploitation
of prior 3D maps using a single 2D push-broom laser - a fixed
scanning LIDAR sensor which generates data from being
“pushed” through the world by a vehicle. Our motivation here
is a vision of many low cost vehicles leveraging, and sharing,
a potentially expensive but one-shot survey. To this end our
localization scheme has no reliance on 3D laser, differential
GPS or integrated inertial systems. Indeed, concerning the
latter, we shall show how our system can outperform a
commercial grade IMU system over 26 km of driven distance.

An immediate question is why bother using a 3D map
at all - does simple 2D scan matching not suffice? Our
experience leads us to answer with a resounding no. The
combinations of roll and pitch, ground strike and grazing
effects from hedgerows, verges, cambers and slopes makes
vanilla techniques fragile. Indeed it was in the act of trying
to accommodate ground strike and non-prismatic workspaces
within conventional scan matching techniques that led us
to what we propose and demonstrate here. We intentionally
orient our single laser downwards - seeking out ground strike.
By integrating estimates of the vehicle motion we can gen-
erate a 3D swathe of laser data. This dense “recent history”
can be continually aligned within our survey 3D point-cloud
by considering and matching the population statistics of the
swathe and survey patch. The problem now is how to estimate
vehicle motion.

Triaxial MEM’s gyroscopes are now ubiquitous and pro-
vide a cheap way to estimate angular rates. A velocity
profile though is harder to come by. Immediately we can
reach for indicated velocity coming from a road vehicle’s
speedometer which, by law, they all possess. However, for
obvious reasons, these devices typically overestimate velocity

and so in this paper we also admit the possibility that we
must perform an online calibration of the velocity feed. We
do this by detecting the passage of road markings through a
fan of laser sweeps and recover vehicle velocity by deducing
(by dynamic programming) a warping between a detected
reflectance signal and that predicted given the prior survey.

One could argue that DGPS and IMU systems will, in the
end, become inexpensive and therefore ubiquitous. While this
is true, one still needs to worry about the operating envelope
of such systems - in particular in areas deprived of good
DGPS reception. As an illustration, consider Figure 1. This
shows the Begbroke test site around which we gathered the
26 km of data used in this paper:

Fig. 1: Loops around the Begbroke site in Oxford, contrasting areas
of good GPS reception (right), with poorer areas, (bottom section,
amongst heavy foliage), and hence larger INS pose estimation
errors. The global origin is shown in the lower-left. The 26km of
data used in the paper was gathered around this site.

Shown in Figure 1 are the indicated trajectories from a high
caliber OxTS INS system as it traverses the science park.
Note that in the sections unobstructed by foliage and build-
ings (predominantly the north-east and western sections), the
performance is good and the estimated vehicle path follows
the road shape. However in the southern section a small copse
of trees inhibits DGPS corrections and the INS-estimated



path diverges wildly from the road - no such issues arise
in our system.

II. RELATED WORK

Laser-based outdoor localization of road vehicles using
prior maps has recently been addressed by several authors.
In [1] the authors make use of an actuated 3D laser sensor
(the Velodyne) in addition to GPS, IMU and odometry data
to generate a precise map offline. Localization within this
map is performed with a particle filter. Although this work
is the most similar to our approach in spirit, we do not
require an expensive, actuated sensor or offline relaxation in
order to generate a map. Furthermore the nature of our laser
data requires us to adopt a quite different objective function.
The authors extend this work in [2], developing a long-
term probabilistic framework, again employing a Velodyne.
Kummerle et. al. [3] develop an autonomous system that
utilizes multi-level surface maps obtained from a Velodyne
to represent the environment with a 2.5D structure. Most
recently, [4] utilize the Velodyne in a SLAM framework. The
authors in [5] utilize a 2D road-network map and a laser
in conjunction with a DGPS-enabled receiver to estimate
pose. Again, we seek to eliminate the requirement for an
expensive, calibration-intense device (such as the Velodyne)
or a persistent GPS signal in order to conduct long-term
navigation.

In [6], the authors utilize a robust ICP [7] algorithm to
perform local scan-matching, and incorporate a histogram-
feature representation to match local submaps. In [8], the
same authors utilize a rotating, scanning laser in order to
generate 3D point-clouds maps. For this work, we take
an approach of intentionally declining the laser to observe
ground-strike, and therefore eschew the use of ICP methods
which, given the scanning pattern of the beam, gives rise to
multiple local minima.

Airborne Laser Swath Mapping (ALSM) [9] is a related
concept in the field of geoimaging, that utilizes a similar
swath-generation technique in order to generate consistent
environment models - however, the system is not used for
localization, instead using INS data for map fusion.

Visual Teach and Repeat [10] is a comparable vision-
based system in which a stereo-camera is used to build
a manifold map consisting of previously-visited submaps
(the teach phase), that is then used in subsequent traversals
for localization (repeat). Our approach differs in terms of
leveraging active-sensing to reduce susceptibility to light-
ing/illumination change, in addition to alleviating the need for
feature identification. VT&R also exhibits a relatively small
convergence basin, which is not the case with our approach.

III. OVERVIEW

We will refer to the survey pass through the workspace as
an experience, consisting of laser-sweeps, poses, velocities
(both angular and linear) and accelerations. We adopt this
terminology to emphasize that we do not need a globally
correct metric map for our road localization task. We simply
wish to localize ourselves with respect to the trajectory and
a point-cloud defined by a prior experience - which in this
case is a drive around urban roads. Of course this does
not preclude the case of localizing against a trajectory that
is metrically perfect - having been massaged by a global
optimization with loop closures etc.- we just don’t require

Fig. 2: A perspective view of a single scan of the declined 2D
laser (in laser-light) as it moves through a section of Begbroke and
produces a swathe (motion is upper-left to lower-right). The high-
lighted scan (colored by height) clearly shows how this orientation
captures the relief of the road and surrounding verges of the vehicle.
The swathe has been colored using the reflectance data gathered by
the 2D scans. As expected the highly-reflective (by design) road
markings can be clearly seen. This signal will be exploited later
in Section V to deduce vehicle velocity and a bias term in the
speedometer readings.

this degree of preparation. We assume that it is possible to
take the survey vehicle motion estimates and produce a 3D
point-cloud that we will term P .

In Section IV we will describe in detail how a stream of
2D laser data can be used to deduce vehicle motion. Before
that it serves us to illustrate upfront the kind of detail that
can be acquired with careful calibration and timing. Figure 2
illustrates how successive declined views can be accumulated
to produce a detailed local view of the workspace. Note also
the highly-reflective road markings, being clearly visible in
laser-light. The figure also highlights the obvious point that
a single 2D scan will be insufficient to localize the vehicle -
there being an obvious forwards backwards ambiguity despite
the marked curbside relief. We will need to build a swathe of
laser light which captures sufficient detail to anchor ourselves
in the survey experience.

IV. LOCALIZATION

Figure 3 shows the overhead view of the 3D point-cloud
P developed during the experience (overlaid on Begbroke),
alongside an exemplar swathe, Q, produced by developing
the motion of the vehicle over a retrospective window
[tk, tk−N ] (where N is the window length, in seconds). The
tracking problem is - given the point-cloud P , and the swathe
developed during runtime, Q - to establish a transformation
T that best aligns the clouds. But how do we generate Q if
we do not know the vehicle motion?

1) Swathe generation: In order to generate the swathe Q
at runtime, we need to be able to reconstruct the motion of
the vehicle over the windowing period. We define a laser-scan
at time t to be:

s(t) = {r1, . . . , r541, i1 . . . i541} (1)

where rn denotes the laser range reading (in meters) for beam
n of scan s(t), in is the intensity of the beam, and S =
{s(1), . . . , s(n)} is a collection of such scans. In addition
we observe, through the gyroscope, the rotational velocities
w(t) around the three ordinate axes of the vehicle (roll, pitch,



Fig. 3: Overhead view of the 3D point-cloud P developed during
the original experience (left), overlaid on the Begbroke site. Points
are colored by height, blue (darker tones) being lowest, and red
(lighter tones) highest. Shown on the right is an example swathe,
Q. Note the different color map, emphasizing the relative nature
of Q. Our task is to determine the transformation that best aligns
Q with P . Note that the scales across these images differ for the
purposes of illustration, and must be viewed in color.

yaw). Given the rotational velocities and the forward velocity
of the vehicle, we can integrate the state equation:

ẋ(t) = v(t)

 cos(
∫ t
t0
ωz(t)dt

sin(
∫ t
t0
ωz(t)dt

sin(
∫ t
t0
ωx(t)dt

 (2)

to produce the Special Euclidean (SE2) pose x(t) (con-
sisting of Cartesian position, and orientation). We can then
project the laser data points S(t) from x(t), thereby gen-
erating the swathe Q. This task is in principle easy, but in
practice details dominate. In particular one has to ensure very
accurate time synchronization between gyro, and laser - this
is something we discuss in Section V-A. Furthermore note we
have a dependence on vehicle velocity v - the determination
of this is also a focus of this paper. Putting aside these issues
for now, the transformation that best aligns Q with P will
be the current pose, x(t). We must now define “best”.

2) Point-cloud alignment: Once we have developed the
swathe over the window period, it is now necessary to solve
for the alignment with the survey point-cloud P . We seek
the transformation T̂ that brings the point-clouds P and Q
into optimal alignment by minimizing an objective function
f :

T̂ = argmin
T

f(P, ω, v, T ) (3)

The swathe, referenced within the survey, is - as we have
seen - a function of angular rotation rate profiles, velocity
profile, laser scans and the SE2 transformation we seek. Its
generation can be factored as

Q 7→ g(ω, v,S) · T (4)

where Equation 4 develops the swathe point-cloud Q, and
applies the transformation T to project it into the global
frame. Both P and Q are distributions of points in space. The
Kullback-Leibler divergence offers a natural way to compare
two such distributions and forms the basis of our objective
function f . We define the operator H(.) to represent the

histogramming function, and - applying this operation to our
survey and hypothesized swathe (a function of T ) - the KL-
divergence is:

f(P,Q) =

N∑
i=1

H(Q)(i)log
H(Q)(i)

H(P)(i)
(5)

where N is the cardinality of the distribution and i is an
iterator over bins. Note that if we only require a translation
and rotation, then we can simply project points down into
the global XY plane in order to generate the histograms.

Representing the point-clouds by their projected probabil-
ity distributions is a natural way of capturing the structure
of the environment. Prismatic structures, such as walls, are
represented by a higher density as they are observed more
often. Points on the ground have a naturally lower density,
but are still informative about the shape and structure of the
road. Using this approach, the KL divergence is a natural
way of representing the distance between these distributions,
provided that they are well defined - and this is a detail that
we now must consider.

To prevent infinite divergences we apply absolute discount-
ing to the probability distributions as follows. For any two
probability distributions P and Q obtained by counts, with
the sets of non-zero bins defined as SP and SQ respectively,
we define the smoothed probability distribution P to be:

P(i) =

{
P(i)− ε if i ∈ SP (6)
ε otherwise for i ∈ SP \ SQ (7)

Absolute discounting reduces the probability mass in dis-
tribution P in all the non-zero bins (Equation 6), and this
mass is reapportioned into bins that have mass under Q but
not P (which is a set difference, denoted by operator \ in
Equation 7). This is necessary in order for the divergence
measure to be properly defined. As a final step, driven by our
experience in optimizing this objective function, we apply a
discrete Gaussian convolution to both P and Q during the
optimization procedure:

P′(x, y) = P(x, y) ? g(x, y) (8)

=

∞∑
n1=−∞

∞∑
n2=−∞

P(n1, n2) · g(x− n1, y − n2) (9)

and similarly for Q, where g(x, y) = N (0, σ). This
operation contributes significantly to the smooth nature of
the cost function (discussed in Section VI).

Algorithm 1 details the described optimization procedure.
The algorithm takes, as input, the survey experience point-
cloud data, a candidate swathe and an initial estimate of the
desired transformation Tguess (an SE2 pose).

The histogram granularity, c, is initialized to a default
value, and the halting criterion for the optimization set to
infinity. Line 7 makes use of the histogramming operation to
produce a discrete probability density function (pdf) of the
input point-cloud data with the number of bins determined by
the second parameter. Line 11 defines the cost function used
in the optimization procedure. This function takes as input
two probability distributions, and returns the KL-divergence
between them.



Algorithm 1 Cost function optimization

1: procedure ESTIMATETRANSFORMATION(P,Q, Tguess)
2: c← cinit
3: δ ←∞
4: T ← Tguess
5: while δ > TOL do
6: costmin ←∞
7: P← H(P, c)
8: P′ ← P ?N (0, σ)
9: F ← BuildHistogramFilter(T )

10: for T̂ in F do
11: cost← KL(H(Transform(Q, T̂ ), c),P)
12: if cost < costmin then
13: δ ←|| T̂ − T ||
14: T ← T̂
15: end if
16: end for
17: c← c + cdelta
18: end while
19: return(T )
20: end procedure

The granularity is increased by a quantity cdelta at every
iteration (Line 17), to provide an annealing effect. The
halting measure, δ, is the difference between the previous
SE2 estimate and the current estimate, and the optimization
halts once this measure has reached a predefined value. The
difference between the two poses is measured as given by
the metric in [11], in which the orientation in a SE2 pose is
expressed with a complex number representation:

T → (xt, yt, a, b) ∈ R4 (10)

where a and b are the complex components of the angle.
The euclidean metric is now valid for comparing two poses
in SE2.

3) Pose prediction: At the next discrete interval, we will
have observed more rotational and linear velocity data, and
require a pose seed for Algorithm 1 to initiate the search
procedure. To obtain this estimate, we apply the velocities,
through the system state equations, to x(tk−1) which we then
use as a pose guess.

V. CALIBRATION ISSUES

A. Timing
Of vital importance is the timing calibration between the

time as perceived by the clocks on-board the gyroscope,
the laser sensor, and the speedometer. Disagreement between
these clocks will result in point-clouds that exhibit “smear”.
Thinking of the information content of Q, this smearing or
blurring will flatten the objective function making optimiza-
tion harder.

We use the TICSync [12] timing algorithm, which learns a
probabilistic mapping between clocks, and is able to recover
both skew and offset. Shown in Figure 4 are the TICSync-
corrected data (left), and the same data with a normally
distributed 50ms error in timing (right). Visible in the right-
hand figure is the ghosting in laser-space that increases with
increased timing error.

Fig. 4: Overhead view of a set of road markings around the
Begbroke site. The point-cloud generated with TICSync-corrected
timings is shown on the left, as compared against a similar point-
cloud with normally-distributed 50ms error. The corrected point-
cloud does not exhibit the ghosting (visible in the right image).

B. Speedometer bias: offline calibration
Up until this point we have assumed that all of the terms

on the right hand side of Equation 4 are known - v(t) in
particular being taken from the onboard vehicle speedometer.
In general, vehicle speedometers are calibrated to over-
estimate the vehicle speed, and we will need to compensate
for a constant bias term. As such, we will discuss a calibration
process, in which we try to recover the bias factor from the
observed velocity data. Immediately we reach for our already
developed cost function and make this a function of unknown
velocity bias. In this process, we will estimate this factor
by scaling the observed velocities over a test section and
generating correspondingly scaled candidate point-clouds Q.
Our calibration task is then to find the transformation T̂ and
bias τ̂ that will produce the best alignment with the reference
cloud P:

T̂ , τ̂ = argmin
T ,τ

f(P, ω, v, T , τ) (11)

Figure 5 shows the results of this process:

Fig. 5: An illustration of the speedometer bias calibration results.
We apply varying correction factors, τ , to the observed velocities
- and hence swathe sizes - over a training period, and record the
minimum cost of the best pose match found for each factor. We
use the best estimate over all bias values to correct the speedometer
bias.



We intentionally corrupt ground truth velocities with a
known bias, and use the above procedure to estimate the
correcting factor. For the results presented in this paper, the
true bias was set at 1.15, and therefore the value required
to compensate for this over-estimate is ∼ .87. We use
the estimated correction factor of .865 in our analysis, and
show that despite the resulting velocity error we can still
track successfully over 26 kilometers of data. Note that this
calibration technique only works when driving at a constant
velocity, which is somewhat prescriptive.

C. Speedometer bias: online calibration

There is another alternative to the approach just described
- one which, in the long term, might help us do away with
requiring a velocity feed at all and in the short term dispenses
with the need to drive at a constant speed. Furthermore
it offers the opportunity to to refine the bias calibration
continually over the lifetime of the vehicle. The idea is that
we can infer the velocity of the vehicle from the passage
of environmental cues and hence form our bias estimate.
We are fortunate here in that roads are replete with features
specifically designed to be highly visible. As can be seen in
Figure 6 - an intensity plot of the per-beam laser reflectances
- the road-markings are highly-visible features in laser light.
Given the repeatability of these features, and the fact that
they tend to occur in similar regions in beam space (angular
position in the scan), we can easily track the signal over time.

Fig. 6: Per-beam laser reflectances for a subset of the beams along
a straight section of Begbroke, plotted against time. This image
shows clearly the center-divide marking in the middle section of
the road. (Lighter (blue) colors are less reflective, red (darker) are
more reflective).

Figure 7 (top) shows a 1D representation of the (nor-
malized) intensity values shown in Figure 6. This signal
is observed during the generation of the swathe Q. Figure
7 (bottom) shows the normalized intensity of center-lane
divides in the experience point-cloud P along a spline model
of the centerline of the road network of Begbroke. The
warping function that aligns these two signals is the velocity
of the vehicle.

To extract this warping function, we use Dynamic Time
Warping [13], a well-known technique in speech-analysis
for comparing audio signals. Given two signals, x ∈
(x1, . . . , xN ) and y ∈ (y1, . . . , yN ), the distortion between
the signals D(x,y) is based on a sum of local distances

Fig. 7: Normalized reflectance values of the road markings during
the swathe generation in the time domain (top), and from a section
of a spline model of the road-network around Begbroke (bottom).
The warping function that aligns these two signals is the velocity
of the vehicle.

between elements d(xi, yi), with the optimal alignment min-
imizing the distortion. This is posed as a minimization
problem:

DΦ(x,y) = min
Φ

1

KΦ

KΦ∑
k=1

d(xΦt
(k),yΦr

(k)) (12)

that is solved with a dynamic-programming approach. KΦ

represents the warping distance of path Φ. Having estimated
the distortion, we can align the signals, determining the
timing correspondence over the lane markers, hence inferring
the velocity. Figure 8 shows the results of applying this
procedure over the data shown in Figure 6.

Fig. 8: The estimated and true velocities over the straight section
of road shown in Figure 6, using the described warping method.
The ground-truth velocity is shown in the top image in (solid) blue,
with the estimated velocity in (dotted) red. Even with these relatively
coarse markers, the estimated velocity tracks the true velocity. The
lower figure illustrates the error in the velocity estimation over this
swathe.



Sadly due to the current modest declination of the laser, it
is not feasible to use this approach to infer velocity around
areas of high curvature - the tracking becomes troublesome.
Current work is addressing this problem by declining the
laser even further, maintaining all the properties described so
far, in addition to allowing for continuous velocity updates
thus removing a dependence on speedometer data. However,
as it stands we are able to demonstrate quantifiably good
localization with just a single push-broom laser. The next
section will present these results.

VI. RESULTS

A. Trajectory analysis
In order to evaluate the performance of the localization

procedure, we require some method of comparing the resul-
tant trajectories with those of the INS system (which itself
can be in substantial error as shown in Figure 1). We define
this as a displacement function, which for pose x(t) is defined
to be:

δ(x(t)) =|| x(t)− x̂e || (13)

where xe is the closest pose of the trajectory in the survey
loop, as measured by the metric in [11]. This displacement
will capture both the true deviation from trajectory to trajec-
tory in addition to the localization error. If we had traversed
exactly the same route as the survey vehicle, we would expect
this displacement to be zero. As we never traverse the exact
same route twice, we expect - in a well behaved system - the
displacement to be well bounded.

Fig. 9: Relative displacement of both the localization procedure
(shown in red, dotted) and the INS (blue, solid) as measured against
the experience data over the Begbroke site. The INS exhibits a high
displacement in areas of poor GPS signal quality.

Figure 9 depicts this displacement function for the INS and
the localization procedure for the same loop, as measured
against the reference trajectory. As we can see from the
figure, the displacement for both the INS and the localization
procedure are bounded - however, the average displacement
over the trajectory is substantially lower for our method, as
compared to the INS. The areas in which the INS exhibits
a large deviation (particularly the northern and southern
sections) are results of the paucity of GPS signal in those
regions. However, the displacement of our localization pro-
cedure is relatively constant over the site. To validate our
technique, we tested the performance of the algorithm over
26 kilometers of trajectory data, spanning a period of three
months. These datasets were taken at various times of the

day, ranging from early morning (9 a.m) to early evening (7
p.m).

Fig. 10: A comparison of the mean displacement from the experi-
ence map for both the INS and the described localization procedure
over 26 km worth of trajectory data spanning three months. The
boxplot shows the median, 25th and 75th percentiles, with outliers
plotted individually as points. As can be seen from the figure, the
standard deviation of this displacement is substantially lower for
our method.

Figure 10 shows a comparison of the mean displacement
per trajectory, collected over this data. Depicted are the
median, 25th and 75th percentiles of the mean displacement
per trajectory, for all the trajectories considered. Not only
is the median displacement distinctly lower for our method,
but outliers have been eliminated and the variance of the dis-
placement substantially reduced. This is compelling evidence
that localization using our method is far more repeatable over
the long term than relying on the estimates from the INS.

Fig. 11: A comparison of the original trajectories (gray, dotted) vs.
the corrected trajectories (red, solid). As can be seen from the image,
the INS data drifts substantially in areas of poor reception, which is
avoided by using the described method (must be viewed in color).

Figure 11 contrasts the trajectories from the INS system
(shown in gray) and the trajectories obtained from the lo-
calization procedure. Examining the INS trajectories, we can
see a distinct wander over time. As expected, the localized
trajectories are more consistent of all the datasets, and do



not exhibit the gross errors that are clearly visible in the
trajectories from the INS.

B. Cost-function degeneracy
The KL-divergence typically produces a cost-function with

a smooth gradient, as can be seen for example in Figure 12.
However it also shows the effect of aliasing - the “corridor”
problem, in which the valley in the figure lies along the
forward trajectory of the vehicle.

Fig. 12: An exemplar cost surface using the KL divergence between
the swathe Q and the experience map P . Visible is the “corridor”
problem along the forward trajectory of the vehicle (indicated by
the arrow).

In current work we are looking at ways in which we can
detect (via the appearance of the swathe) such a degeneracy
but in the 26 km of data used here it did not cause a
localization failure - the issue is not critical.

VII. DISCUSSION

We again highlight the performance of the system in the
GPS-degenerate southern section of the test site. Although
GPS-integrated INS systems are the current state-of-the-art in
terms of outdoor navigation, these systems cannot operate for
extended periods in GPS-denied areas without experiencing
drift, as is shown in Figure 11. Use of a prior survey and
swathe-matching using the proposed framework allows for
robust long-term navigation, irrespective of GPS attenuation.

As the test site is a closed course, relatively little traffic was
experienced during data collection. However, fluctuations in
the number of vehicles in the car-parks (located in the west
and south-east) present a constantly changing scenario, but
were aptly dealt with by the proposed framework.

Although the current implementation does not run in real-
time, there are no impediments to producing an implemen-
tation that does - the sliding window property requires an
initialization period, however the algorithm is constant time
(O(1)). The overall complexity of the algorithm is determined
by point query in the prior map, which is (as a function of
map size n and requested points k) O(

√
n+ k).

VIII. CONCLUSION

To conclude, we have presented a push-broom laser lo-
calization system which leverages a prior 3D survey for
use on road vehicles. We demonstrated and evaluated its
performance on 26 kilometers of real-world data spanning a

3 month period. We believe the work presented here can be
extended to reduce dependence on angular and linear motion
rate measurements. However as it stands, the system is an
indication of what you can do without a Velodyne.
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